skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tran, Nghi H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The widespread adoption of heartbeat monitoring sensors has increased the demand for secure and trustworthy multimodal cardiac monitoring systems capable of accurate heartbeat pattern recognition. While existing systems offer convenience, they often suffer from critical limitations, such as variability in the number of available modalities and missing or noisy data during multimodal fusion, which may compromise both performance and data security. To address these challenges, we propose MultiHeart, which is a robust and secure multimodal interactive cardiac monitoring system designed to provide reliable heartbeat pattern recognition through the integration of diverse and trustworthy cardiac signals. MultiHeart features a novel multi-task learning architecture that includes a reconstruction module to handle missing or noisy modalities and a classification module dedicated to heartbeat pattern recognition. At its core, the system employs a multimodal autoencoder for feature extraction with shared latent representations used by lightweight decoders in the reconstruction module and by a classifier in the classification module. This design enables resilient multimodal fusion while supporting both data reconstruction and heartbeat pattern classification tasks. We implement MultiHeart and conduct comprehensive experiments to evaluate its performance. The system achieves 99.80% accuracy in heartbeat recognition, surpassing single-modal methods by 10% and outperforming existing multimodal approaches by 4%. Even under conditions of partial data input, MultiHeart maintains 94.64% accuracy, demonstrating strong robustness, high reliability, and its effectiveness as a secure solution for next-generation health-monitoring applications. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available January 1, 2027
  3. Free, publicly-accessible full text available June 8, 2026
  4. null (Ed.)